【期刊信息】

Message

刊名:环境技术
主办:中国电器科学研究院股份有限公司
主管:中国机械工业集团有限公司
ISSN:1004-7204
CN:44-1325/X
影响因子:0.189802
被引频次:9816
数据库收录:
统计源期刊(2018);期刊分类:环境与安全

现在的位置:主页 > 综合新闻 >

美团技术解析自动驾驶中的决策规划算法概述

来源:环境技术 【在线投稿】 栏目:综合新闻 时间:2021-05-12

作者:网站采编

关键词:

【摘要】1. 引言 在一套完整的自动驾驶系统中,如果将感知模块比作人的眼睛和耳朵,那么决策规划就是自动驾驶的大脑。大脑在接收到传感器的各种感知信息之后,对当前环境作出分析,然后

1. 引言

在一套完整的自动驾驶系统中,如果将感知模块比作人的眼睛和耳朵,那么决策规划就是自动驾驶的大脑。大脑在接收到传感器的各种感知信息之后,对当前环境作出分析,然后对底层控制模块下达指令,这一过程就是决策规划模块的主要任务。同时,决策规划模块可以处理多么复杂的场景,也是衡量和评价自动驾驶能力最核心的指标之一[1]。

图1. 自动驾驶系统中的决策规划模块分层结构,引用自[2]

如图1所示,典型的决策规划模块可以分为三个层次。

其中,全局路径规划(Route Planning)在接收到一个给定的行驶目的地之后,结合地图信息,生成一条全局的路径,作为为后续具体路径规划的参考;

行为决策层(Behavioral Layer)在接收到全局路径后,结合从感知模块得到的环境信息(包括其他车辆与行人,障碍物,以及道路上的交通规则信息),作出具体的行为决策(例如选择变道超车还是跟随);

最后,运动规划(Motion Planning)层根据具体的行为决策,规划生成一条满足特定约束条件(例如车辆本身的动力学约束、避免碰撞、乘客舒适性等)的轨迹,该轨迹作为控制模块的输入决定车辆最终行驶路径。

本文将分别介绍各层的主要作用与常见算法,并且比较各种算法的优劣性及适用情景。

2. 全局路径规划(Route Planning)

全局路径规划是指在给定车辆当前位置与终点目标后,通过搜索选择一条最优的路径,这里的“最优”包括路径最短,或者到达时间最快等条件。这一过程类似于我们生活中经常用到的“导航”功能,区别在于自动驾驶中使用的高精地图与我们常见的地图不太一样,在高精地图中包含了每条车道在内的更多信息。常见的全局路径规划算法包括Dijkstra和A算法,以及在这两种算法基础上的多种改进。Dijkstra算法[3]和A*算法[4]也是在许多规划问题中应用最为广泛的两种搜索算法。

图2. 全局路径规划示意

1. Dijkstra算法

Dijkstra算法是由计算机科学家Edsger W. Dijkstra在1956年提出,用来寻找图形中节点之间的最短路径。在Dijkstra算法中,需要计算每一个节点距离起点的总移动代价。同时,还需要一个优先队列结构。对于所有待遍历的节点,放入优先队列中会按照代价进行排序。在算法运行的过程中,每次都从优先队列中选出代价最小的作为下一个遍历的节点。直到到达终点为止。

Dijkstra算法的优点是:给出的路径是最优的;缺点是计算时间复杂度比较高(O(N2)),因为是向周围进行探索,没有明确的方向。

2. A*算法

为了解决Dijkstra算法的搜索效率问题,1968年,A算法由Stanford研究院的Peter Hart, Nils Nilsson以及Bertram Raphael发表,其主要改进是借助一个启发函数来引导搜索的过程。具体来说,A算法通过下面这个函数来计算每个节点的优先级:

其中:

f(n) 是节点n的综合优先级。当我们选择下一个要遍历的节点时,我们总会选取综合优先级最高(值最小)的节点。

g(n)是节点n距离起点的代价。

h(n) 是节点n距离终点的预计代价,这也就是A*算法的启发函数。

3. 行为决策(Behavioral Layer)

在确定全局路径之后,自动驾驶车辆需要根据具体的道路状况、交通规则、其他车辆与行人等情况作出合适的行为决策。

这一过程面临三个主要问题:

首先,真实的驾驶场景千变万化,如何覆盖?

其次,真实的驾驶场景是一个多智能体决策环境,包括主车在内的每一个参与者所做出的行为,都会对环境中的其他参与者带来影响,因此我们需要对环境中其他参与者的行为进行预测;

最后,自动驾驶车辆对于环境信息不可能做到100%的感知,例如存在许多被障碍物遮挡的可能危险情形。

综合以上几点,在自动驾驶行为决策层,我们需要解决的是在多智能体决策的复杂环境中,存在感知不确定性情况的规划问题。可以说这一难题是真正实现L4、L5级别自动驾驶技术的核心瓶颈之一,近年来随着深度强化学习等领域的快速发展,为解决这一问题带来了新的思路和曙光。

以下将行为决策层的模型分为四类分别介绍[5]:

1. 有限状态机模型

自动驾驶车辆最开始的决策模型为有限状态机模型[6],车辆根据当前环境选择合适的驾驶行为,如停车、换道、超车、避让、缓慢行驶等模式,状态机模型通过构建有限的有向连通图来描述不同的驾驶状态以及状态之间的转移关系,从而根据驾驶状态的迁移反应式地生成驾驶动作。


文章来源:《环境技术》 网址: http://www.hjjszz.cn/zonghexinwen/2021/0512/1590.html


上一篇:fgo日服拉二技能强化本公开 高文:叫声哥就给你
下一篇:直击股东会|兴蓉环境:业绩稳健增长有望持续